
Synthesizing Abstract Transformers

Pankaj Kumar Kalita 1, Sujit Muduli 1, Loris D’Antoni 2,

Thomas Reps 2, Subhajit Roy 1

1Indian Institute of Technology Kanpur

2University of Wisconsin-Madison

Kalita et al. Synthesizing Abstract Transformers 1 / 25

Abstract Interpretation

9

8
7

2
1

5

Concrete Domain

[7,9]

[2,2]

Abstract Domain

Kalita et al. Synthesizing Abstract Transformers 2 / 25

Abstract Interpretation

9

8
7

2
1

5

Concrete Domain

[7,9]

[2,2]

Abstract Domain

α

Kalita et al. Synthesizing Abstract Transformers 2 / 25

Abstract Interpretation

9

8
7

2
1

5

Concrete Domain

[7,9]

[2,2]

Abstract Domain

γ

Kalita et al. Synthesizing Abstract Transformers 2 / 25

Abstract Interpretation

9

8
7

2
1

5

Concrete Domain

[7,9]

[2,2]

Abstract Domain

β

Kalita et al. Synthesizing Abstract Transformers 2 / 25

Abstract Transformer

f
f#

• Tricky even for trivial operation
• Error-prone

Kalita et al. Synthesizing Abstract Transformers 3 / 25

Abstract Transformer

f
f#

• Tricky even for trivial operation
• Error-prone

Kalita et al. Synthesizing Abstract Transformers 3 / 25

Problem statement

Can we automatically synthesize an abstract transformer for any operations?

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

f̂ ♯ = λa : ⊔{β(f(ci)) | ci ∈ γ(a)}

Kalita et al. Synthesizing Abstract Transformers 4 / 25

Problem statement

Can we automatically synthesize an abstract transformer for any operations?

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

f̂ ♯ = λa : ⊔{β(f(ci)) | ci ∈ γ(a)}

Kalita et al. Synthesizing Abstract Transformers 4 / 25

Problem statement

Can we automatically synthesize an abstract transformer for any operations?

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

f̂ ♯ = λa : ⊔{β(f(ci)) | ci ∈ γ(a)}
Kalita et al. Synthesizing Abstract Transformers 4 / 25

Motivation

Given the following domain-specific language, we desire to get an abstract transformer for
Math.abs in the interval domain:

Transformer ::= λa.[E,E]
E ::= a.l | a.r | 0 | −E | +∞ | −∞| E + E | E − E | E ∗ E | min(E,E) | max(E,E)

a.l: Left limit

a.r: Right limit

We could emit one of the following abstract transformers:

abs
♯
1(a : Aintv) : Aintv = [max(max(0, a.l),−a.r), max(−a.l, a.r)]

abs
♯
2(a : Aintv) : Aintv = [max(0, a.l)− min(0, a.r), max(−a.l, a.r)]

Kalita et al. Synthesizing Abstract Transformers 5 / 25

Motivation

Given the following domain-specific language, we desire to get an abstract transformer for
Math.abs in the interval domain:

Transformer ::= λa.[E,E]
E ::= a.l | a.r | 0 | −E | +∞ | −∞| E + E | E − E | E ∗ E | min(E,E) | max(E,E)

a.l: Left limit

a.r: Right limit

We could emit one of the following abstract transformers:

abs
♯
1(a : Aintv) : Aintv = [max(max(0, a.l),−a.r), max(−a.l, a.r)]

abs
♯
2(a : Aintv) : Aintv = [max(0, a.l)− min(0, a.r), max(−a.l, a.r)]

Kalita et al. Synthesizing Abstract Transformers 5 / 25

Motivation

Given the following domain-specific language, we desire to get an abstract transformer for
Math.abs in the interval domain:

Transformer ::= λa.[E,E]
E ::= a.l | a.r | 0 | −E | +∞ | −∞| E + E | E − E | E ∗ E | min(E,E) | max(E,E)

a.l: Left limit

a.r: Right limit

We could emit one of the following abstract transformers:

abs
♯
1(a : Aintv) : Aintv = [max(max(0, a.l),−a.r), max(−a.l, a.r)]

abs
♯
2(a : Aintv) : Aintv = [max(0, a.l)− min(0, a.r), max(−a.l, a.r)]

Kalita et al. Synthesizing Abstract Transformers 5 / 25

Motivation

Given the following domain-specific language, we desire to get an abstract transformer for
Math.abs in the interval domain:

Transformer ::= λa.[E,E]
E ::= a.l | a.r | 0 | −E | +∞ | −∞| E + E | E − E | E ∗ E | min(E,E) | max(E,E)

a.l: Left limit

a.r: Right limit

We could emit one of the following abstract transformers:

abs
♯
1(a : Aintv) : Aintv = [max(max(0, a.l),−a.r), max(−a.l, a.r)]

abs
♯
2(a : Aintv) : Aintv = [max(0, a.l)− min(0, a.r), max(−a.l, a.r)]

Kalita et al. Synthesizing Abstract Transformers 5 / 25

Challenges

1 f̂ ♯ may not be computable.

2 f̂ ♯ may not be expressible in L.
3 Precision defines a partial ordering on abstract transformers, so f ♯ ∈ L may not be unique.

Example:

f(x) = 0,
L = {λa. [0, k], λa. [−k, 0] | k ∈ N ∧ k ≥ 1},
Ŝ♯L = {λa.[0, 1], λa.[−1, 0]}

-

Kalita et al. Synthesizing Abstract Transformers 6 / 25

Challenges

1 f̂ ♯ may not be computable.

2 f̂ ♯ may not be expressible in L.

3 Precision defines a partial ordering on abstract transformers, so f ♯ ∈ L may not be unique.
Example:

f(x) = 0,
L = {λa. [0, k], λa. [−k, 0] | k ∈ N ∧ k ≥ 1},
Ŝ♯L = {λa.[0, 1], λa.[−1, 0]}

-

Kalita et al. Synthesizing Abstract Transformers 6 / 25

Challenges

1 f̂ ♯ may not be computable.

2 f̂ ♯ may not be expressible in L.
3 Precision defines a partial ordering on abstract transformers, so f ♯ ∈ L may not be unique.

Example:

f(x) = 0,
L = {λa. [0, k], λa. [−k, 0] | k ∈ N ∧ k ≥ 1},
Ŝ♯L = {λa.[0, 1], λa.[−1, 0]}

-

Kalita et al. Synthesizing Abstract Transformers 6 / 25

Challenges

1 f̂ ♯ may not be computable.

2 f̂ ♯ may not be expressible in L.
3 Precision defines a partial ordering on abstract transformers, so f ♯ ∈ L may not be unique.

Example:

f(x) = 0,
L = {λa. [0, k], λa. [−k, 0] | k ∈ N ∧ k ≥ 1},
Ŝ♯L = {λa.[0, 1], λa.[−1, 0]}

-

Kalita et al. Synthesizing Abstract Transformers 6 / 25

Best L-transformer

L-transformer (f ♯
L)

An abstract transformer f ♯ is a L-transformer (denoted as f ♯
L) if f

♯ ∈ L.

best L-transformer (f̂ ♯
L)

An abstract transformer f ♯ ∈ L is a best L-transformer (denoted as f̂ ♯
L) if f

♯
L is both sound

and there does not exist any other transformer in L that is more precise.

Kalita et al. Synthesizing Abstract Transformers 7 / 25

Best L-transformer

L-transformer (f ♯
L)

An abstract transformer f ♯ is a L-transformer (denoted as f ♯
L) if f

♯ ∈ L.

best L-transformer (f̂ ♯
L)

An abstract transformer f ♯ ∈ L is a best L-transformer (denoted as f̂ ♯
L) if f

♯
L is both sound

and there does not exist any other transformer in L that is more precise.

Kalita et al. Synthesizing Abstract Transformers 7 / 25

Problem statement (revised)

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

We build a tool, अमूत� (Amurth), that solves the above problem.

Abstract Interpretation Engines for Free!

Kalita et al. Synthesizing Abstract Transformers 8 / 25

Problem statement (revised)

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

synthesize a best L-transformer f̂ ♯
L of f for A in L.

We build a tool, अमूत� (Amurth), that solves the above problem.

Abstract Interpretation Engines for Free!

Kalita et al. Synthesizing Abstract Transformers 8 / 25

Problem statement (revised)

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

synthesize a best L-transformer f̂ ♯
L of f for A in L.

We build a tool, अमूत� (Amurth), that solves the above problem.

Abstract Interpretation Engines for Free!

Kalita et al. Synthesizing Abstract Transformers 8 / 25

Problem statement (revised)

Given the

concrete semantics Φf of a concrete transformer f ,

description of an abstract domain (A,⊑,⊔), and its relation to the concrete domain
(α, γ, β), and

a domain-specific language L,

synthesize the best abstract transformer f̂ ♯ of f for A in L.

synthesize a best L-transformer f̂ ♯
L of f for A in L.

We build a tool, अमूत� (Amurth), that solves the above problem.

Abstract Interpretation Engines for Free!

Kalita et al. Synthesizing Abstract Transformers 8 / 25

Who cares?

Abstract transformers are often non-trivial even for a simple operation.

Manually written abstract transformers error-prone.

We found multiple bugs in abstract transformers in the existing abstract interpretation
engines.

Amurth can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

Now, let’s dive into the workings of Amurth.

Kalita et al. Synthesizing Abstract Transformers 9 / 25

Who cares?

Abstract transformers are often non-trivial even for a simple operation.

Manually written abstract transformers error-prone.

We found multiple bugs in abstract transformers in the existing abstract interpretation
engines.

Amurth can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

Now, let’s dive into the workings of Amurth.

Kalita et al. Synthesizing Abstract Transformers 9 / 25

Who cares?

Abstract transformers are often non-trivial even for a simple operation.

Manually written abstract transformers error-prone.

We found multiple bugs in abstract transformers in the existing abstract interpretation
engines.

Amurth can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

Now, let’s dive into the workings of Amurth.

Kalita et al. Synthesizing Abstract Transformers 9 / 25

Who cares?

Abstract transformers are often non-trivial even for a simple operation.

Manually written abstract transformers error-prone.

We found multiple bugs in abstract transformers in the existing abstract interpretation
engines.

Amurth can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

Now, let’s dive into the workings of Amurth.

Kalita et al. Synthesizing Abstract Transformers 9 / 25

Who cares?

Abstract transformers are often non-trivial even for a simple operation.

Manually written abstract transformers error-prone.

We found multiple bugs in abstract transformers in the existing abstract interpretation
engines.

Amurth can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

Now, let’s dive into the workings of Amurth.

Kalita et al. Synthesizing Abstract Transformers 9 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,

Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,

Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,

Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,
Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).

Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,
Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,
Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,
Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Algorithm Overview

Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy.

Attempts to meet the dual objectives of soundness and precision

Correspondingly, the algorithm is guided by two kinds of examples,
Positive Example

⟨a, c′⟩ such that, a ∈ A and c′ ∈ γ(f̂ ♯(a)).
Violation of soundness verification generates positive examples (E+).
e.g., ⟨[5, 9], 6⟩ (abs in interval domain)

Negative Example

⟨a, c′⟩ such that, a ∈ A and ∃ f̂ ♯
L ∈ Ŝ♯

L such that, c′ /∈ γ(f̂ ♯
L(a))

Violation of precision verification generates negative examples (E−).
e.g., ⟨[5, 9], 2⟩ (abs in interval domain)

Counterexamples generated by the soundness and precision verifiers drive two CEGIS
loops.

Kalita et al. Synthesizing Abstract Transformers 10 / 25

Amurth in action!
f ♯
abs ← λa.[0, 2]

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!
f ♯
abs ← λa.[0, 2]

Positive counterexample: ⟨[0, 5], 3⟩

⋆

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!
f ♯
abs ← λa.[0, a.l + a.r]

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!
f ♯
abs ← λa.[0, a.l + a.r]

Negative counterexample: ⟨[3, 7], 8⟩

•

⋆

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!

•

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!

•

⋆

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!

•

•

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!

•

•
⋆

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Amurth in action!

•

•
•

•

f̂ ♯

Kalita et al. Synthesizing Abstract Transformers 11 / 25

Algorithm

Generate
Transformer

positive example negative example

Soundness
CEGIS

Precision
CEGISCheck

Soundness
Check

Precision

sound? precise?

Additional algorithmic components are needed! (see the paper for details)

Kalita et al. Synthesizing Abstract Transformers 12 / 25

Algorithm

Generate
Transformer

positive example negative example

Soundness
CEGIS

Precision
CEGISCheck

Soundness
Check

Precision

sound? precise?

Additional algorithmic components are needed! (see the paper for details)

Kalita et al. Synthesizing Abstract Transformers 12 / 25

Claims

Theorem 1

If Algorithm terminates, it returns a best L-transformer for the concrete function f .

Theorem 2

If the DSL L is finite, Algorithm always terminates.

Kalita et al. Synthesizing Abstract Transformers 13 / 25

Evaluation: Domains and Operations

Domain Type Abstract Domains Operations

Constant String (CS) charAt♯

String Set (size k) (SSk) concat♯,
String Char Inclusion (CI) contains♯,

Prefix-Suffix (PS) toLower♯, toUpper♯,
String Hash (SH) trim♯

Unsigned-Int (Auintv) add♯, sub♯, mul♯,
Fixed Bitwidth Interval Signed-Int (Auintv) and♯, or♯, xor♯,

Wrapped (W) shl♯, ashr♯, lshr♯

Domains proposed in prior work.

Kalita et al. Synthesizing Abstract Transformers 14 / 25

Evaluation: Domains and Operations

Domain Type Abstract Domains Operations

Constant String (CS) charAt♯

String Set (size k) (SSk) concat♯,
String Char Inclusion (CI) contains♯,

Prefix-Suffix (PS) toLower♯, toUpper♯,
String Hash (SH) trim♯

Unsigned-Int (Auintv) add♯, sub♯, mul♯,
Fixed Bitwidth Interval Signed-Int (Auintv) and♯, or♯, xor♯,

Wrapped (W) shl♯, ashr♯, lshr♯

Domains proposed in prior work.

Kalita et al. Synthesizing Abstract Transformers 14 / 25

Evaluation: Domains and Operations

Domain Type Abstract Domains Operations

Constant String (CS) charAt♯

String Set (size k) (SSk) concat♯,
String Char Inclusion (CI) contains♯,

Prefix-Suffix (PS) toLower♯, toUpper♯,
String Hash (SH) trim♯

Unsigned-Int (Auintv) add♯, sub♯, mul♯,
Fixed Bitwidth Interval Signed-Int (Auintv) and♯, or♯, xor♯,

Wrapped (W) shl♯, ashr♯, lshr♯

Domains proposed in prior work.

Kalita et al. Synthesizing Abstract Transformers 14 / 25

Evaluation: Methodology

(Existing) Abstract Interpretation Engine

Manually
Written

Transformers

Kalita et al. Synthesizing Abstract Transformers 15 / 25

Evaluation: Methodology

(Existing) Abstract Interpretation Engine

Manually
Written

Transformers

Kalita et al. Synthesizing Abstract Transformers 15 / 25

Evaluation: Methodology

(Existing) Abstract Interpretation Engine

Manually
Written

Transformers

AMURTH
Synthesized
Transformer

Kalita et al. Synthesizing Abstract Transformers 15 / 25

Comparison with manual operations

Similar performance as manually written transformers in terms of analysis time, imprecision
index, fixpoint iteration, program states.

However, we discovered 4 soundness bugs in the manually written transformers.

Kalita et al. Synthesizing Abstract Transformers 16 / 25

Comparison with manual operations

Similar performance as manually written transformers in terms of analysis time, imprecision
index, fixpoint iteration, program states.

However, we discovered 4 soundness bugs in the manually written transformers.

Kalita et al. Synthesizing Abstract Transformers 16 / 25

Bug #1: contains in CI

CI = {⊥CI} ∪ {[L,U] | L,U ⊆ Σ, L ⊆ U}

L : must set
U : may set

αCI({“fan”, “ran”}) = [L : {′a′}, U : {′f ′,′ n′,′ r′}]

Kalita et al. Synthesizing Abstract Transformers 17 / 25

Bug #1: contains in CI

CI = {⊥CI} ∪ {[L,U] | L,U ⊆ Σ, L ⊆ U}
L : must set
U : may set

αCI({“fan”, “ran”}) = [L : {′a′}, U : {′f ′,′ n′,′ r′}]

Kalita et al. Synthesizing Abstract Transformers 17 / 25

Bug #1: contains in CI

CI = {⊥CI} ∪ {[L,U] | L,U ⊆ Σ, L ⊆ U}
L : must set
U : may set

αCI({“fan”, “ran”}) = [L : {′a′}, U : {′f ′,′ n′,′ r′}]

Kalita et al. Synthesizing Abstract Transformers 17 / 25

Bug #1: contains in CI

contains(str1, str2) =

{
⊤ if str2 is contiguous substring of str1

⊥ otherwise

Manually written transformer

1 contains
♯
org(a1 : CI)(a2 : CI) : AbsBool =

2 ite(isBot(a1.l, a1.u)∨isBot(a2.l, a2.u),
3 boolBot ,

4 ite(isTop(a1.l, a1.u) ∨ isTop(a2.l, a2.u),
5 boolTop,
6 ite(¬isSubset(a2.l, a1.u),
7 boolFalse ,

8 ite(size(a2.u) ≤ 1 ∧ isSubset(a2.u, a1.l),
9 boolTrue,

10 boolTop))))

Synthesized abstract transformer

1 contains
♯
syn(a1 : CI)(a2 : CI) : AbsBool =

2 ite(isBot(a1.l, a1.u)∨isBot(a2.l, a2.u),
3 boolBot ,

4
5
6 ite(¬isSubset(a2.l, a1.u),
7 boolFalse ,

8 ite(isEmpty(a2),
9 boolTrue,
10 boolTop)))

s1="aa", s2="aaaaa"
a1=[{‘a’}, {‘a’}], a2=[{‘a’}, {‘a’}]

Kalita et al. Synthesizing Abstract Transformers 18 / 25

Bug #1: contains in CI

contains(str1, str2) =

{
⊤ if str2 is contiguous substring of str1

⊥ otherwise

Manually written transformer

1 contains
♯
org(a1 : CI)(a2 : CI) : AbsBool =

2 ite(isBot(a1.l, a1.u)∨isBot(a2.l, a2.u),
3 boolBot ,

4 ite(isTop(a1.l, a1.u) ∨ isTop(a2.l, a2.u),
5 boolTop,
6 ite(¬isSubset(a2.l, a1.u),
7 boolFalse ,

8 ite(size(a2.u) ≤ 1 ∧ isSubset(a2.u, a1.l),
9 boolTrue,

10 boolTop))))

Synthesized abstract transformer

1 contains
♯
syn(a1 : CI)(a2 : CI) : AbsBool =

2 ite(isBot(a1.l, a1.u)∨isBot(a2.l, a2.u),
3 boolBot ,

4
5
6 ite(¬isSubset(a2.l, a1.u),
7 boolFalse ,

8 ite(isEmpty(a2),
9 boolTrue,
10 boolTop)))

s1="aa", s2="aaaaa"
a1=[{‘a’}, {‘a’}], a2=[{‘a’}, {‘a’}]

Kalita et al. Synthesizing Abstract Transformers 18 / 25

Conclusions

Current techniques at handling such operations are either highly imprecise, unsound, or
manual and error-prone.

Our tool, Amurth, is capable of automatically synthesizing non-trivial abstract
transformers

Our experiments on the existing tools shows the value of such an endeavour.

Kalita et al. Synthesizing Abstract Transformers 19 / 25

Conclusions

Current techniques at handling such operations are either highly imprecise, unsound, or
manual and error-prone.

Our tool, Amurth, is capable of automatically synthesizing non-trivial abstract
transformers

Our experiments on the existing tools shows the value of such an endeavour.

Kalita et al. Synthesizing Abstract Transformers 19 / 25

Conclusions

Current techniques at handling such operations are either highly imprecise, unsound, or
manual and error-prone.

Our tool, Amurth, is capable of automatically synthesizing non-trivial abstract
transformers

Our experiments on the existing tools shows the value of such an endeavour.

Kalita et al. Synthesizing Abstract Transformers 19 / 25

I thank Google for the generous travel grant that allowed me to

attend SPLASH 2022.

Kalita et al. Synthesizing Abstract Transformers 20 / 25

Thank you!

Kalita et al. Synthesizing Abstract Transformers 21 / 25

Backup slides

Kalita et al. Synthesizing Abstract Transformers 22 / 25

Failed consistency

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Inconsistent: no f ♯
E ∈ L that satisfies all positive and negative examples.

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Occam’s razor

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Failed consistency

Occam’s razor

Kalita et al. Synthesizing Abstract Transformers 23 / 25

Algorithm

Generate
Transformer

Generate MaxSAT
Transformer

Check Consistency

positive example negative example

Soundness
CEGIS

Precision
CEGIS

yes

no

Check
Soundness

Check
Precision

sound? precise?

Kalita et al. Synthesizing Abstract Transformers 24 / 25

trim in CI

strs = {" abc ", "a a"}
a = [{‘ ’,‘a’}, {‘ ’,‘a’,‘b’,‘c’}]

trim♯(a) = [{‘a’}, {‘ ’,‘a’,‘b’,‘c’}]

Original (buggy) transformer in SAFEstr

1 trim
♯
org(a : CI) : CI =

2 ite(isBot(a.l,a.u),

3 boolBot ,

4 ite(isTop(a.l,a.u),

5 boolTop ,

6 ite(size(a.u)≤1∧containsSpace(a.u),
7 [∅, ∅],
8 a)))

Synthesized abstract transformer

1 trim
♯
syn(a : CI) : CI =

2 ite(isBot(a.l,a.u),

3 boolBot ,

4 ite(isTop(a.l,a.u),

5 boolTop ,

6 ite(size(a.u)≤1∧containsSpace(a.u),
7 [∅, ∅],
8 [removeSpace(a.l),a.u])))

Kalita et al. Synthesizing Abstract Transformers 25 / 25

